US009239869B1

a2 United States Patent

Zhang et al.

US 9,239,869 B1
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(1)
(52)

(58)

REPLICATION AND SYNCHRONIZATION
FOR PROTECTING NTFS DEDUPLICATION
VOLUMES

Applicant: CA, Inc., Islandia, NY (US)

Haiyang Zhang, Beijing (CN); Gong
jun Fei, Beijing (CN); Guoxian Shang,
Beijing (CN); Shaorong Li, Beijing
(CN)

Inventors:

Assignee: CA, Inc., Islandia, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 304 days.

Notice:

Appl. No.: 13/890,007

Filed: May 8, 2013

Int. CI.
GOGF 17/30
U.S. CL
CPC GOG6F 17/30575 (2013.01)
Field of Classification Search

None
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,584,338 B1* 9/2009 Brickeretal. 711/162

7,613,750 B2* 11/2009 Valiyaparambil et al.
8,127,109 B2* 2/2012 Matzecccoeevvvevenennee 711/216
8,370,297 B2* 2/2013 Anglin et al. ... 707/616
8,843,443 B1* 9/2014 Xingetal.ccee 707/639
2007/0276885 Al* 11/2007 Valiyaparambil et al. 707/204
2010/0235332 Al* 9/2010 Haustein GOG6F 17/30315
707/692
2010/0325180 ALl™ 12/2010 Lee ..ccccovvvvrvecivinene 707/823
2014/0188805 Al* 7/2014 Vijayan 707/646

* cited by examiner

Primary Examiner — Debbie Le
(74) Attorney, Agent, or Firm — Gilliam IP PLLC

(57) ABSTRACT

Various embodiments illustrated and described herein
include systems, methods, and computer program products to
protect NTFS deduplicated volumes. Some embodiments
select a data protection mode from various modes to protect
deduplicated volumes. Some data protection modes retrieve
the deduplicated files and associated data chunks without
rehydrating the files and send them to a replica. Some data
protection modes rehydrate deduplicated files as they are
retrieved, send the rehydrated files to the replica, and turn on
deduplication at the replica so the files can be deduplicated on
the replica. Deduplication settings can also be transferred to
the replica so that deduplication on the replica mimics dedu-
plication on the source. Some data protection modes replicate
the deduplicated files to the replica.

20 Claims, 7 Drawing Sheets

10 12
FILE1 FILE 2
194~ | METADATA: NAME, ATTRIBUTES, 11~ | METADATA: NANE, ATTRIBUTES,
N\ M
ETC. ETC.
litel S22 1184 122
N T Y MO
1201 H126 120+ 120
s 1 v = B I
DEDUPLICATION ENGINE 152

{} 134
J

FILE 1

114~ | METADATA NAME, ATTRIBUTES,
ETC.
140
126 SPASE REPARSE

{} 136
J

FILE 2

116 -| | VETADATA NANE, ATTRIBUTES,
ETC.
144
1P| [REPARSE

\
|B||| IR | |
S S S S
1e 120 122 124 126 128 130
CHUNK STORE
\

U.S. Patent Jan. 19, 2016 Sheet 1 of 7 US 9,239,869 B1
10 12
’ ’
FILE 1 FILE 2

_{ [METADATA: NAME, ATTRIBUTES, _{ [METADATA: NAME, ATTRIBUTES,
14~ 16

- ETC. - ETC.

- L1220 - L1220
120+ L1126 120- L1230
iyl I | T o= RS | A o

DEDUPLICATION ENGINE 152
{} 134 {} 136
’ ’
FILE 1 FILE 2
14 | METADATA: NAWE, ATTRIBUTES, 116~ | METADATA: NAVE, ATTRIBUTES,
i FTC. i FTC.
~140 144
- H SPAE || RE/PﬂARSE H 4z H SPARKSE | RPRRSE
< \

AfL B L c |l m || N [Y|

N SN SN SN N N

ne 120 122 124 126 128 120

CHUNK STORE
k\
146

FIG. 1

U.S. Patent Jan. 19, 2016 Sheet 2 of 7 US 9,239,869 B1

US 9,239,869 B1

Sheet 3 of 7

Jan. 19, 2016

U.S. Patent

@ Ol
rr—-—mH——"TFTFT="—""™"™""™""™""™"™"™""™""™"""™"""™"""™""™""™""™7"7"7— 1 r——~—"F"™>"F"«—F/"'"™""™""™"""""""™"™"™>"™""™""™>""™"™"/"™""™"""™""™"™"7—
| | - v2e-J NoLvmOA
_ | | ¥H10
| | |
I _ _ | 1
BRI BETIT | e rs |
| Qnm YNHO | | @Nm || NOHD |
_ | | R ——— !

_ STl NOILYIROINI |~ 92% _ _ S9114 NOLLYWMONI |~ 0%
_ i .
| ﬁmm | _ INMOA wﬁ
|
| | |
! YINNT L | | | YA 3L
! NOILYOIdna3al| | | NOILYOITdNa3a
| \wmué SSVdAG | | o %m? SS¥dAg _
! EENVET | s BT
| 222 2 | | qz¢e ol
_ F——————— - _IIIII_
_ |
| |
| INONT INION3
_ ’ p
| 02e] Yig
’ e 7
2le ole

US 9,239,869 B1

Sheet 4 of 7

Jan. 19, 2016

U.S. Patent

¥ Ol
e~ 1 . i
| I | | 1 AR !
|
_] 1B
| d . |
| vy 015 | | oz~ 1S |
| N _ _

_ MNTHD Ovy | _ oy MNDHD vy |
| S P J_
| |

=T NOLVIRONI | 1 ST14 NOLLYAMOANI | |
s e ISk | 1 _ w,__\m_%% _
| > won |1 | | |
_ 531 NOLLYOIdN3a o ! |
| |

| N o [ENe s NowrdnGa | |

| |
_ L e @ >, |
_ _ _ _
| |
| SCY | | |
o . 0/1 311 d o _ 0/1 713 | |
_ 25t b m% _
_ T T |
| _ I _
| _ | _
i O3 N3 i
| _ | |
| 0 | | ¢ |
] oct |] ol |
A w A
cly Ol

US 9,239,869 B1

Sheet S of 7

Jan. 19, 2016

U.S. Patent

. r——~—FT™"™~"~""~""™""™>"~>""~™""™>""™""*™"™>"™""™""™"™"™""/"™""™/"™""™""™/"™/™/™=—

G ol | T |
e - : |
| 55 - s _

. _
i : . 821 WH ovG |
|
_ zag~] 0L | | 2|
| WH) pag || NOLLVAEONT | |
_ i |
| NOLARON | | ! |
i occ~ [Mo el N e _
~ 0N NOLLYONdNa3a

| NOLYOI] o <> L
| | o 7 res |
| e |
| | | |
m - —— _
| | | |
| | | |
| - menor K %__/M_mfmm |
| L ogs S
| | | _ |
_ _ [ﬁ_ A4 47 I
| L N |
| zzg-11 |
| |
|] |
| N3 NOLLYOedY |
| |
_ SN _HHQF_, _
|] 0%S ozg L_

U.S. Patent Jan. 19, 2016 Sheet 6 of 7 US 9,239,869 B1

SELECT
proTECTION @1
VOLUME LEVEL MODE
SINCHRONZATION T REPLCATIO
FILE LEVEL
SYNCHRONIZATION
| ! [
ACCESS ACCESS | [CREATE INTIAL | |
oeoweLeaten ™2 | penvorated 20 1 | swarronzen @30
FILES FILES | COPY |
N |
L / /
ACCESS ACCESS
CHNG " | peoweLicaTion 622 CTETJ%TJERBQLTA | ~622
STORE SETTINGS
\ / /
SENDFILES AND | s, [SEND REHVRATED S0 ORWED| ...,
CHUNK STORE 1~ FLESAND |-624 | DATATO P
TO REPLICA DEDUPLICATION REPLICA
SETTINGS TO REPLICA
640
e N _
\ / |
STORE FILES STORE APPLY
T revoRATED 920 ORNALED |28
STORE FILES DATA
Y
ENABLE
DEDUPLICATION | ~628
WITH RECEIVED
SETTINGS

FIG. ©

U.S. Patent Jan. 19, 2016 Sheet 7 of 7 US 9,239,869 B1

700
fl
| 702 704~
o5 PROGRAN
PROSIE”STSING 054 VOLATIE
7oA NONVOLATILE
REVOVABLE |~ 712 720~ COMNNCATION
STORAGE CONNECTION
74 71\6 718
NON-REMOVABLE
ot INPUT OUTRUT

FIG. 7

US 9,239,869 B1

1
REPLICATION AND SYNCHRONIZATION
FOR PROTECTING NTFS DEDUPLICATION
VOLUMES

BACKGROUND

The disclosure relates generally to protecting information
through backup of information, and more particularly, to
synchronization and replication of NTFS deduplication vol-
umes.

BRIEF SUMMARY

According to one aspect of the present disclosure a system
may identify a mode of data protection such as volume level
synchronization, file level synchronization or replication.

In volume level synchronization, deduplicated files and a
chuck store are retrieved without rehydrating the files and
both the deduplicated files and the chunk store are sent to the
replica for storage.

In file level synchronization, deduplicated files are
retrieved in a manner that rehydrates the files and the rehy-
drated files are sent to the replica for storage. Deduplication
settings can also be retrieved and sent to the replica and
deduplication enabled on the replica using these settings. By
matching the deduplication settings on the replica to the set-
tings of the master, the files may be deduplicated on the
replica in the same manner as they are on the master.

In replication, data is captured on the master (such as by
using a filtering driver) and sent to a replica. The replica can
apply the data to in the same manner as on the master to keep
the master and replica in sync. Deduplication may be enabled
on the replica using the settings on the master so that files on
the replica are deduplicated in the same fashion as they are on
the master.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are illustrated by way of
example and are not limited by the accompanying figures
with like references indicating like elements.

FIG. 1 illustrates an example of deduplicated files and
chunk store.

FIG. 2 illustrates an example deployment of master and
replica systems.

FIG. 3 illustrates an example embodiment of volume level
synchronization.

FIG. 4 illustrates an example embodiment of file level
synchronization.

FIG. 5 illustrates an example embodiment of replication.

FIG. 6 illustrates an example flowchart for volume level
synchronization, file level synchronization, and replication

FIG. 7 illustrates an example embodiment of a device
suitable for use herein.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described herein
in any of a number of patentable classes or context including
any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement
thereof. Accordingly, aspects of the present disclosure may be
implemented entirely hardware, entirely software (including
firmware, resident software, micro-code, etc.) or combining
software and hardware implementation that may all generally

be referred to herein as a “circuit,” component,”

2 <

‘module,

10

15

20

25

30

35

40

45

50

55

60

65

2

or “system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable media having computer
readable program code embodied thereon.

Any combination of one or more computer readable media
may be utilized. The computer readable media may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
anobject oriented programming language such as Java, Scala,
Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python
or the like, conventional procedural programming languages,
such as the “C” programming language, Visual Basic, Fortran
2003, Perl, COBOL 2002, PHP, ABAP, dynamic program-
ming languages such as Python, Ruby and Groovy, or other
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider) or in a cloud computing
environment or offered as a service such as a Software as a
Service (SaaS).

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-

US 9,239,869 B1

3

mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable instruction
execution apparatus, create a mechanism for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that when executed can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions when stored in the computer readable medium
produce an article of manufacture including instructions
which when executed, cause a computer to implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable instruction
execution apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatuses or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-
ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

FIG. 1 illustrates an example of deduplicated files and
chunk store. The illustrated example is a conceptual diagram
of a version of the Windows Operating System file dedupli-
cation in NTFS volumes. As files are stored on a volume, there
is often common information across several files. Deduplica-
tion changes the structure of the files to store the common
information once so the overall storage requirements are
reduced.

FIG. 1 illustrates two files, file 1 and file 2, illustrated as
110 and 112, respectively. Each file has metadata (114 and
116, respectively) and data stored in one or more streams. The
data in the streams can be “chunked” or broken into parts. File
1 has data chunks 118, 120, 122, 124 and 126 while file 2 has
data chunks 118, 120, 122, 128 and 130. Thus, chunks 118,
120 and 122 are common between file 1 and file 2, while
chunks 124, 126, 128 and 130 are not.

Some versions of the Windows Operating System, such as
Windows Server 2012, have a deduplication feature. Dedu-
plication as implemented by the Windows Operating System
has several characteristics. Deduplication is not in the write-
path when new files come along. New files write directly to
the NTFS volume and the files are evaluated for deduplication
by a file groveler on a regular schedule. The background
processing mode checks for files that are eligible for dedupli-
cation on a set schedule. Hot data (files that are being written
to) will be passed over by deduplication until the file reaches
a certain age. Files that meet the deduplication criteria are
referred to as “in-policy” files. A setting determines how old
afile should be before they become eligible for deduplication.
The setting has a default and is also configurable by the user.
Particular file types and/or locations can be excluded from
deduplication.

Deduplication is transparent so that applications and end
users do not know that the data has been transformed on disk.
When a user requests a file, it is transparently served up,
returning all data to its correct location in the file.

Deduplication segments files into variable-sizes (32-128
kilobyte chunks). The chunking module splits a file into a
sequence of chunks in a content dependent manner. The
chunks have an average size of 64 KB and they are com-

20

35

40

45

55

4

pressed and placed into a chunk store located in a hidden
folder at the root of the volume called the System Volume
Information, or “SVIfolder”. The normal file is replaced by a
small reparse point and/or sparse data point, which have a
pointer to a map of all the data streams and chunks required to
“rehydrate” the file and serve it up when it is requested. As
used herein, rehydrate will be used to indicate the process of
reconstructing the original file format. Thus, a rehydrated
deduplicated file is a deduplicated file that has been rehy-
drated to its original format.

In FIG. 1, the deduplication process is illustrated by dedu-
plication engine 132. After the deduplication engine is fin-
ished processing a file, the file structure is changed, as dis-
cussed above. Thus, the structure of file 1 is modified and
illustrated as 134 and the structure of file 2 is modified and
illustrated as 136. File 1 and file 2 retain their metadata
(illustrated by 114 and 116, respectively) and have links to the
appropriate data chunks as illustrated by sparse point 138 and
reparse point 140 for file 1 and sparse point 142 and reparse
point 144 for file 2.

Asillustrated in FIG. 1, the data chunks are stored in chunk
store 146. As discussed above, these can be stored in a com-
pressed format. Also as discussed above, the chunk store is
stored in a hidden folder on the volume, the SVI folder.

FIG. 2 illustrates an example deployment of master and
replica systems. Such a deployment illustrates various
deployment options where data on the master systems is
protected by copying it onto the replica systems. The deploy-
ment in FIG. 2 is illustrated generally as 200. The deployment
may include a control service 202 executing on a device as
depicted. Control service 202 allows administration and man-
agement of the deployment and the various entities and ser-
vices within the deployment.

Control service 202 is generally accessible directly on its
device, or remotely accessible through various devices and
systems as illustrated by devices 204, 206, and 208. In some
embodiments, access may be through a shell or other such
automation. In a deployment utilizing the Windows Operat-
ing System, for example, where control service 202 is execut-
ing on a system running the Windows Operating System,
control service 202 may be accessed and administered
through PowerShell, which is task automation framework,
consisting of a command-line shell and associated scripting
language built on top of Microsoft’s NET Framework. In
other embodiments, email may be used to access and interact
with control service 202. In still other embodiments, devices
204,206 and 208 may use other means to remotely access and
administer control service 202.

Deployment 200 includes systems where some form of
data protection is desired. These are illustrated in FIG. 2 as
master systems 210, 212, 214. Locations where data to be
protected is copied is referred to as a replica. FIG. 2 illustrates
replicas 216, 218 and 220. These master systems and replicas
can be actual computer systems or devices or virtual
machines or a combination of both.

The goal of data protection will be to preclude loss of the
data residing on storage devices of a master system and, in
some instances, allowing automatic failover to a replica sys-
tem if something should happen to the master system. In this
disclosure, such protection will be afforded by either syn-
chronization or replication of data from a master system (or
replica) to a replica.

Synchronization refers to the periodic copying or “snap-
shot” of the storage devices of the master system (or replica)
to a replica. Such synchronization typically occurs on a des-
ignated schedule. Synchronization can occur at the volume
level or at the file level. For volume level synchronization,

US 9,239,869 B1

5

typically all data on a volume is copied to the replica. How-
ever, in many instances, certain data resides on a volume that
would not be beneficial to copy or that should be skipped in a
particular deployment. In these instances, such data can be
skipped and not synchronized to the replica. Examples of
situations where this will occur are discussed below.

In addition to volume level synchronization, file level syn-
chronization can occur. In this instance, files are copied from
a volume to a replica. Again, some files can be skipped as
determined by a configuration or because it would not be
profitable to copy such files to the replica. Examples are
discussed below.

Finally, data on a master can be protected by replication. In
this situation, an initial copy of a volume is typically made on
the replica. Then as changes are made to the volume, the
changes are copied and sent to the replica where they are
applied. In this way, a real time, or near real time, protection
system can be established.

As illustrated in FIG. 2, multiple master systems can be
copied to a single replica system. This is illustrated where
master systems 210 and 212 are copied to replica 216. Simi-
larly a replica can be protected by copying data from the
replica to another replica as illustrated by replica 216 being
protected by replica 220.

FIG. 3 illustrates an example embodiment of volume level
synchronization. Volume level synchronization sends all (or
nearly all) data of a volume to the replica. However, useless
data should not be sent in order to minimize bandwidth uti-
lized for transferring data and to minimize replica storage
requirements. In this context useless data may comprise data
that is not needed for normal functioning of the replica (e.g.,
would not be “missed” if the data from the replica needs to be
used to recreate the master) and/or data that has been
excluded from protection for one reason or another. Some-
times useless data comprises data that a system would nor-
mally recreate when the data from a replica is used to recreate
the master.

In FIG. 3, master 310 includes files 326. Files 326 may
include files that have been deduplicated as described in con-
junction with FIG. 1. In this situation, the chunk store 322 will
contain information as illustrated in conjunction with FIG. 1
(e.g., data blocks referenced by the deduplicated files). There-
fore, chunk store 322 contains information that should be
transferred to the replica.

As illustrated in FIG. 3, chunk store 322 is contained in
volume system information folder 320. Volume system infor-
mation folder 320 may also include other information 324.
When performing volume level synchronization, other infor-
mation 324 need not be transferred to the replica.

Also illustrated in FIG. 3 is file /O 316 and deduplication
filter driver 318. These blocks represent a mechanism to
retrieve deduplicated files from the system. However, files
retrieved in this manner will be rehydrated. In order to mini-
mize the bandwidth used to transfer information from master
310to replica 312, deduplicated files 326 and chunk store 322
should be accessed in a manner that retrieves deduplicated
files 326 and chunk sore 322 intact (e.g. without rehydrating
the deduplicated files). This is illustrated in FIG. 3 by bypass
access 328.

Although bypass access 328 is illustrated as separate from
file I/O 316 and deduplication filter driver 318, it may also be
part of file I/O 316 and/or deduplication filter driver 318. In
such an embodiment, file /O 316 and/or deduplication filter
driver 318 need only provide a mechanism for retrieving
deduplicated files 326 and chunk store 322 intact (e.g. with-
out rehydrating the deduplicated files).

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In FIG. 3, the information to be protected may also include
files that have not been deduplicated. Although these are not
specifically illustrated in FIG. 3, in many instances volumes
to be protected will contain at least some files that have not
been deduplicated. Some of these files are not deduplicated
because they are either excluded from deduplication for one
reason or another or are not suitable for deduplication. Others
of' these files may not be deduplicated because deduplication
has not yet been performed on them. As previously discussed,
depending on the deduplication settings, only files of a certain
“age” are considered for deduplication in some embodi-
ments.

In situations where master 310 has a mixture of dedupli-
cated and non-deduplicated files, the non-deduplicated files
may be retrieved in the “normal” way (e.g., without worrying
about preserving the deduplicated structure intact). Of
course, if the non-deduplicated files are compressed in other
ways or have other unique attributes or features, care can also
be taken to preserve the original file structure during retrieval.

As indicated in FIG. 3, data retrieved by engine 314 (e.g.,
data to be protected and sent to replica 312) is sent to replica
312. Typically this data is sent via a network, such as network
344. Network 344 may be of any type, such as a Local Area
Network (LAN) or a Wide Area Network (WAN).

Replica 312 receives the data as indicated by engine 330.
Replica 312 then stores the received information. Replica 312
is illustrated as comprising virtually the same type of com-
ponents as master 310 including file I/O 332, deduplication
filter driver 334 and bypass access 342. Again, bypass access
342 represents a mechanism to store deduplicated files, such
as files 340, and chunk store, such as chunk store 338, without
the need to rehydrate them (and perhaps deduplicate them
once stored). In some embodiments, such bypass access may
be separate from the usual way of storing files and other
information. In other embodiments, such bypass access may
be provided by file /O 332 and/or deduplication filter driver
334.

As indicated in FIG. 3, received deduplicated files 340 may
be stored along with received chunk store 338. Chunk store
338 may be stored in volume system information folder 336.
Preserving this relationship allows normal operation of the
deduplication system of the windows operating system.

Although these are not specifically illustrated in FIG. 3,
some of the data received by engine 330 may contain at least
some files that have not been deduplicated. Some of these files
are not deduplicated because they are either excluded from
deduplication for one reason or another or are not suitable for
deduplication. Others of these files may not be deduplicated
because deduplication has not yet been performed on them.
As previously discussed, depending on the deduplication set-
tings, only files of a certain “age” are considered for dedupli-
cation in some embodiments.

In situations where replica 312 receives a mixture of dedu-
plicated and non-deduplicated files, the non-deduplicated
files may be stored in the “normal” way (e.g., without wor-
rying about preserving the deduplicated structure intact). Of
course, if the non-deduplicated files are compressed in other
ways or have other unique attributes or features, care can also
be taken to preserve the original file structure during storage.

If master 310 has deduplication enabled using particular
settings, these settings can be retrieved and sent to replica
312. Replica 312 may then enable deduplication using the
same settings as master 310. If this is done, non-deduplicated
data retrieved by engine 314 and sent to replica 312 will be
treated the same on replica 312 as it is on master 310. This will
keep the data of replica 312 consistent with master 310.

US 9,239,869 B1

7

As an example, consider a system with deduplication
enabled such that only files older than 1 week are considered
for deduplication. Ifa file is copied from master 310 to replica
312 in its non-deduplicated state, and later deduplicated on
master 310, then if deduplication is enabled on replica 312
using the same settings (including the same schedule and
settings that determine which files are considered for dedu-
plication), then the file will be deduplicated on replica 312 as
well.

Alternatively, or additionally, as the deduplication sched-
ule will be applied to replica 312 from master 310 the sched-
ule may be translated to the replica time zone. When the
schedule is translated to the replica time zone, as long as the
files on master 310 are deduplicated, the files on replica 312
will also be deduplicated, since master and replica has same
deduplication schedulers for the protected volumes.

FIG. 4 illustrates an example embodiment of file level
synchronization. File level synchronization reads data at a file
level and synchronizes it from a master to a replica. It differs
from volume level synchronization primarily in how the data
is accessed on the master. Like volume level synchronization,
the goal is to protect the desired information on the master by
copying it to the replica.

FIG. 4 illustrates master 410 including an engine 416.
Engine 416 accesses the data on master 410 to be protected
and sends the data to replica 412 (using an appropriate net-
work interface and network stack), usually over a network,
such as network 414.

Master 410 includes mechanisms to access deduplicated
files as well as non-deduplicated files, assuming both dedu-
plicated files and non-deduplicated files exist on master 410.
Of course, some embodiments may only contain dedupli-
cated files or non-deduplicated files. In FIG. 4, files 422
represent both deduplicated files and non-deduplicated files.
In FIG. 4, file I/O 418 represents the mechanism used by
engine 416 to access files 422. In some embodiments access
to both deduplicated files and non-deduplicated files may be
accomplished by the same mechanism (such as that illus-
trated by file I/O 418). In other embodiments, different
mechanisms may provide access to deduplicated files and
non-deduplicated files. FIG. 4 shows engine 416 accessing
non-deduplicated files 422 through file I/O 418 as shown by
arrow 423. FIG. 4 also shows engine 416 accessing dedupli-
cated files 422 via file I/O 418 and deduplication filter driver
420.

In FIG. 4, deduplication filter driver 420 represents a
mechanism provided by the system to access deduplicated
files 422 in a manner that rehydrates the files. Deduplication
filter driver 420 access deduplicated files 422 and chunk store
426 and uses the information stored therein to rehydrate the
file and return it to engine 416 via file /O 418. The result is the
file as if it had not been deduplicated.

Chunk store 426 is stored within system volume informa-
tion folder 424. System volume information folder 424 may
also include additional information as indicated by line 428.

Master 410 of FIG. 4 may also include a deduplication
engine (not shown) along with its settings. The deduplication
settings are transferred from master 410 to replica 412 so files
can be deduplicated on the replica as discussed below.

As previously discussed, replica 412 receives files sent
from master 410 and stores them on an appropriate volume,
using engine 430 as illustrated in FIG. 4. Although not spe-
cifically illustrated in FIG. 4, engine 430 typically receives
the files using an appropriate network interface and network
stack.

Engine 430 stores the received files on an appropriate vol-
ume. FIG. 4 illustrates the mechanism to accomplish this as

5

10

15

20

25

30

35

40

45

50

55

60

65

8

file I/O 432. File [/O 430 represents a mechanism provided by
the operating system, or virtual machine environment if
engine 430 is executing within a virtual machine. Files 434
represent the files as stored on the volume.

Replica 412 includes deduplication engine 436 and chunk
store 442. Chuck store 442 is located within volume system
information folder 440. Volume system information folder
can contain other information as indicated by 444.

As previously mentioned, replica 412 receives deduplica-
tion settings from master 410. These deduplication settings
can contain any information used by master 410 for dedupli-
cation, such as a deduplication schedule, files that should be
included or excluded from deduplication, the age that files
should be considered for deduplication, etc.

Using the received deduplication settings, engine 430 may
set up deduplication engine 436 to mirror what happens on
master 410. Thus, files 434 will be treated the same on replica
412 as files 422 are on master 410. In this way, files that are
deduplicated on master 410 will be deduplicated on replica
412.

FIG. 5 illustrates an example embodiment of replication.
Replication tends to differ from either volume level synchro-
nization (FIG. 3) or file level synchronization (FIG. 4) since it
tends to capture and replicate data as it is written to the
volume (e.g., capture changes as they happen) rather than
synchronize either the volume or files on a periodic schedule.
Of course, capturing incremental snapshots on a short sched-
ule (e.g., snapshots taken close together) can approximate
continuous capture.

InFIG. 5, master 510 captures data as it is written to the file
system and sends the data to replica 512, typically over a
network such as network 516. The data capture on master 510
captures changes as they occur to the master and replicate the
changes to the replica in order to keep master 510 and replica
512 in sync. Such changes can occur, for example, when files
are created, modified or removed. Captured changes may be
an entire volume (or volumes) or may be limited, for example,
to only portions of a volume and/or specific files and/or files
and/or volumes that meet specific criteria. Settings can also
be captured and replicated, as for example when deduplica-
tion settings are captured and replicated.

However, useless data should not be captured in order to
minimize bandwidth utilized for transferring data and to
minimize replica storage requirements. In this context useless
data may comprise data that is not needed for normal func-
tioning of the replica (e.g., would not be “missed” if the data
from the replica was used to either recreate the master or if the
master failed and the replica took over as a master) and/or data
that has been excluded from protection for one reason or
another. Sometimes useless data comprises data that a system
would normally recreate during these scenarios.

FIG. 5 illustrates applications 518 as making changes,
illustrated by blocks 522. Blocks 522 are examined by filter-
ing file service driver 524 to see what blocks are “bound” to
the replication scenario. In other words, filtering file service
driver 524 identifies those blocks that should be captured to
meet the settings of the replication as described above. The
identified blocks 526 may be preserved in a journal 528 (or
used to create a journal depending on implementation). Jour-
nal 528 stores those changes that should be replicated to
replica 512. Engine 520 retrieves the journaled changes 530
and sends them to replica 512. Engine can, of course, use
appropriate network interfaces and network stacks to send
journaled changes 530.

Filtering driver 524 may then use the typical provided
mechanisms for sending the changes to the files as expected
by applications 518. FIG. 5 illustrates this mechanism as file

US 9,239,869 B1

9

1/0 532. File I/O 532 stores changes in the volume either
directly or through other layers. The changes may include, for
example, creating, modifying, and/or deleting files. FIG. 5§
illustrates this by files 534.

Master 510 may also contain deduplication engine 536 to
deduplicate files as previously discussed. Deduplication
engine 536 deduplicates files 534 according to its designated
settings, storing data blocks in chunk store 538 as previously
described. Chunk store 538 may be located in volume system
information folder 540 along with additional information, as
illustrated by 542.

Replica 512 receives journaled changes 530, typically via
an appropriate network interface and network stack (not
shown). Engine 544 takes changes 530 and writes them to the
replica volume via normal operating system mechanisms,
such as that illustrated by file /O 546. File [/O 546 then writes
the changes to the replica volume to keep the replica volume
in sync with the master volume. Through this mechanism,
information on the replica volume, such as files 548, are
synchronized with the master volume. As previously dis-
cussed, there is no need to replicate useless information to the
replica volume.

Deduplication settings may also be replicated from master
510 to replica 512. These deduplication setting can comprise
any information needed to set up deduplication on the replica
in the same way that it is set up on the master. The settings can
include, for example, a deduplication schedule, criteria
regarding what files should be considered for deduplication,
etc. The deduplication schedule can be translated to the time
zone of the replica in order to keep the same schedule on the
replica as itis on the master. Engine 544 can use the replicated
deduplication settings to configure deduplication engine 550
in the same manner as deduplication engine 536 is configured
on the master. This is illustrated by arrow 558. The process
consists of standard calls to the operating system (or virtual
machine as appropriate) APIs to configure the deduplication
engine appropriately. Such configuration needs no further
explanation, as one of ordinary skill in the art would readily
know how to match configurations through appropriate sys-
tem calls.

As configured, deduplication engine 550 will deduplicate
files 548, storing appropriate information in chunk store 552,
as previously described. Chunk store 552 is stored in volume
system information folder 554, possibly along with other
information as indicated by 556.

FIG. 6 illustrates an example flowchart for volume level
synchronization, file level synchronization, and replication.
Block 610 represents a determination or selection of which
protection mode will be used. The various protection modes
have been previously described in conjunction with FIG. 3,
FIG. 4, and FIG. 5. The determination (or selection) may be
accomplished through presenting a user with choices via a
user interface during configuration of the system. This may be
accomplished, for example, via control service 202 of FIG. 2.
Block 610 may also represent a determination by the system
based on prior configuration information that a particular
protection mode should be used. This determination may be
made at various levels at various times. For example, control
service 202 of FIG. 2 may make the determination and con-
figure a master and/or replica appropriately. A master and/or
replica may also make the determination upon execution.

When volume level synchronization is used as the protec-
tion mode, the branch starting with block 612 is used. Note
that the branch is illustrated as a single linear path of execu-
tion, however execution of the branch may occur on a par-
ticular schedule, so that it is repeated on a periodic basis. In
this repetition, block 610 may not need to be revisited.

10

15

20

25

30

35

40

45

50

55

60

65

10

Inblock 612 the deduplicated files are accessed (such as by
engine 314 of FIG. 3). This access occurs without rehydrating
the files. This is may be accomplished using a mechanism
provided by the host operating system (e.g., Windows) and/
or, perhaps, a virtual machine. If the host does not provide
appropriate access, then a special driver may be provided to
gain appropriate access.

In block 614, the system retrieves the chunk store, such as
chunk store 322 of FIG. 3. The chunk store is again retrieved
intact, so that the links between the deduplicated files and the
chunk store are preserved. Note that this may not mean that
the links between the files and chunk store do not change, it
simply means that after retrieval (and transfer to the replica)
the links between the files and chunk store are not broken (see,
for example, the links in FIG. 1).

As previously discussed, the chunk store is stored in the
system volume information folder, along with possibly other
information. From a data protection standpoint, the other
information in the system volume information folder is use-
less in most, if not all, situations and may generally be
skipped during volume synchronization.

In block 616 the files and chunk store are sent from the
master to the replica for storage. This is typically accom-
plished over an appropriate network as previously described
in conjunction with FIG. 3.

Although blocks 612, 614 and 616 illustrate accessing and
transferring both files and chunk store, it may also be possible
to only access and transfer those aspects that have changed
since the files and chunk store were last accessed and trans-
ferred to the replica. Such in incremental approach may be
applied to any of the protection modes outlined in this disclo-
sure. Alternatively, or additionally, full access and transfer
may occur. In still other embodiments, a combination may be
used with a full access and transfer being performed some-
times and an incremental access and transfer being performed
between full access and transfer.

In FIG. 6, blocks below dashed line 640 represent actions
taken by the replica. After the files and chunk store are sent
from the master, the replica receives them and in block 618
stores them on an appropriate replica volume. When dealing
with deduplicated files, since the files are already in dedupli-
cated format, no deduplication need be performed. However,
if needed, the integrity of the links can be ensured. This may
take the form, for example, of checking the links in the files
and ensuring they are updated (if necessary) to point to the
correct location in the chunk store.

When the selected mode is file level synchronization, the
master accesses files through a mechanism that rehydrates the
files as they are retrieved. This is illustrated by block 620. The
files to be protected may be identified in a variety of ways,
including protecting all files on the volume, excluding or
including files meeting a certain criteria, or any other selec-
tion criteria.

In addition to information that should be protected (such as
the accessed files), the system also access deduplication set-
tings as illustrated by block 622. This may include, for
example, a deduplication schedule, settings that identify
which files should be considered or excluded from consider-
ation for deduplication, the age at which files should be con-
sidered for deduplication, or any other deduplication settings.

As files and the deduplication settings are retrieved, the
master sends them to the replica as illustrated in block 624,
typically over an appropriate network using an appropriate
network interface and network stack (see the discussion of
FIG. 4).

As previously discussed, the blocks of 620, 622, and 624
may be used to synchronize the entire volume, or may capture

US 9,239,869 B1

11

incremental volume changes, or a combination of both (e.g.,
an entire volume synchronization followed by one or more
incremental synchronizations). Also as previously discussed,
although the execution path is represented by a linear
sequence, the sequence may be periodically repeated accord-
ing to a schedule.

The replica receives the rehydrated files and stores them on
an appropriate volume of the replica as indicated by block
626. Files are stored using the usual operating system func-
tionality. In block 628 the replica enables deduplication (as-
suming it isn’t already enabled) using the received dedupli-
cation settings. The settings can include, for example, a
deduplication schedule, criteria regarding what files should
be considered for deduplication, etc. The deduplication
schedule can be translated to the time zone of the replica in
order to keep the same schedule on the replica as it is on the
master. In this manner, the deduplication engine on the replica
will function like the deduplication engine on the master and
both the master volume and replica volume will come to
mirror each other.

Since deduplication uses the age of files when considering
which files to deduplicate (see discussion of FIG. 1), the age
of'the files on the replica may be set to the age of the files on
the master. In this way files on the replica will be deduplicated
at the same time as the same file on the master.

When the selected protection mode is replication, the
branch starting with block 630 is utilized. Typically when
replication is used to protect a volume, the master captures
and replicates data as it is written to the volume (e.g., capture
changes as they happen) rather than synchronize either the
volume or files on a periodic schedule. Of course, capturing
incremental snapshots on a short schedule (e.g., snapshots
taken close together) can approximate continuous capture.
Thus this branch may be continuously executing in some
embodiments.

Replication typically begins with full volume synchroni-
zation, although that is not always necessary. This optional
step is illustrated in block 630. Obviously, if replication were
continuously executing, block 630 would not be continuously
executed. Rather, block 630 represents an initial (or, perhaps,
occasional) synchronization to start the replication process.
Any synchronization process that provides an initial state
where both the master and replica are in sync can be used.
Examples include volume level synchronization and/or file
level synchronization. Furthermore, only those portions of
the master volume that are to be protected by replication need
be in sync at this point.

In replication, changes made to a volume are captured so
they can be transferred to the replica. Block 632 illustrates the
capture process. The process may be accomplished, for
example, using the filtering driver 524 described in conjunc-
tion with FIG. 5. The process should capture the changes that
are “bound” to (e.g., important to) the replication scenario.
These can be captured in a journal or other log as appropriate
until they can be transferred to the replica. Captured changes
are sent to the replica as illustrated by block 634.

As the replica receives changes, they are applied to the
replica volume to keep the replica in sync with the master.
Block 638 illustrates this process. Although not specifically
illustrated in FIG. 6, deduplication settings may also be cap-
tured (or retrieved) and sent to the replica. As the deduplica-
tion settings are received, the deduplication engine on the
replica can be enabled using the received settings, to keep
files on the replica deduplicated in the same manner as they
are on the master.

Embodiments described herein may be implemented in a
variety of hardware and/or software configurations. An

5

10

20

25

30

35

40

45

55

60

65

12

example embodiment extends to a machine in the example
form of a computing device, such as that of FIG. 7, within
which instructions for causing the machine to perform any
one or more of the methodologies discussed herein may be
executed. In alternative example embodiments, the machine
operates as a standalone device or may be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine may operate in the capacity of a server or a client
machine in server-client network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. In one embodiment, multiple such machines are uti-
lized in a distributed network to implement multiple compo-
nents in a transaction based environment. An object-oriented,
service-oriented, or other architecture may be used to imple-
ment such functions and communicate between the multiple
systems and components.

The machine may be a personal computer (PC), a tablet
device, a Personal Digital Assistant (PDA), a cellular tele-
phone or smartphone, a web appliance, etc. Further, while
only a single machine is illustrated, the term “machine” shall
also be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies dis-
cussed herein.

An example machine 700 is illustrated in FIG. 7 and may
include a processor 702 (e.g., a central processing unit (CPU),
a graphics processing unit (GPU), advanced processing unit
(APU) or any of the above in any combination), and memory
of various forms. The machine may further include a display
or other output 718 and an input device 716 such as keyboard,
touch screen, various user interfaces such as on screen key-
boards, gesture input, voice input, etc.

Machine-Readable Medium

Embodiments also may include machine-readable storage
medium on which is stored one or more sets of instructions
and data structures (e.g., collectively instructions 725)
embodying or used by any one or more of the methodologies
or functions described herein. The instructions may also
reside, completely or at least partially, within the memory or
within the processor during execution thereof by the com-
puter system, with the memory and the processor also con-
stituting machine-readable media.

While the machine-readable storage medium may be
shown in an example embodiment to be a single medium, the
term “machine-readable storage medium” may include a
single storage medium or multiple storage media (e.g., a
centralized or distributed database, or associated caches and
servers) that store the one or more instructions. The term
“machine-readable storage medium” shall also be taken to
include any tangible medium that is capable of storing,
encoding, or carrying instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of embodiments of the present
application, or that is capable of storing, encoding, or carry-
ing data structures used by or associated with such instruc-
tions. The term “machine-readable storage medium” shall
accordingly be taken to include, but not be limited to, solid-
state memories and optical and magnetic media. Specific
examples of machine-readable storage media include non-
volatile memory 708, including by way of example semicon-
ductor memory devices (e.g., Erasable Programmable Read-
Only Memory (EPROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM), and flash
memory devices); magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. Any of which can be either removable
storage 712 or non-removable storage 714, although some are

US 9,239,869 B1

13

typically found as one or the other (e.g. removable or non-
removable). Machine-readable storage media may also
include volatile memory 708.

Transmission Medium

The instructions may further be transmitted or received
over a communications network using a transmission
medium via a network interface device (using, for example
communication connection 720) and utilizing any one of a
number of well-known transfer protocols. Examples of com-
munication networks include a local area network (LAN), a
wide area network (WAN), the Internet, mobile telephone
networks, Plain Old Telephone Service (POTS) networks,
and wireless data networks (e.g., WiFiand WiMax networks).
The term “transmission medium” shall be taken to include
any intangible medium that is capable of storing, encoding, or
carrying instructions for execution by the machine, and
includes digital or analog communications signals or other
intangible medium to facilitate communication of such soft-
ware.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting of
the disclosure. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be fur-
ther understood that the terms “comprises” and/or “compris-
ing,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the claims
below are intended to include any disclosed structure, mate-
rial, or act for performing the function in combination with
other claimed elements as specifically claimed. The descrip-
tion of the present disclosure has been presented for purposes
of illustration and description, but is not intended to be
exhaustive or limited to the disclosure in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the disclosure. The aspects of the disclosure
herein were chosen and described in order to best explain the
principles of the disclosure and the practical application, and
to enable others of ordinary skill in the art to understand the
disclosure with various modifications as are suited to the
particular use contemplated.

20

40

45

60

14

The embodiments illustrated herein are described in suffi-
cient detail to enable those skilled in the art to practice the
teachings disclosed. Other embodiments may be used and
derived there from, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The Detailed Description, therefore,
is not to be taken in a limiting sense, and the scope of various
embodiments is defined only by the appended claims, along
with the full range of equivalents to which such claims are
entitled.

The Abstract is provided to comply with 37 C.F.R. Section
1.72(b) requiring an abstract that will allow the reader to
ascertain the nature and gist of the technical disclosure. It is
submitted with the understanding that it will not be used to
limit or interpret the scope or meaning of the claims. The
following claims are hereby incorporated into the detailed
description, with each claim standing on its own as a separate
embodiment.

What is claimed is:

1. A method comprising:

determining, by a first device, that a storage volume should

be synchronized or replicated to a replica storage vol-
ume, wherein the storage volume comprises volume
data, data chunks, deduplicated files, and deduplication
setting data, wherein each of the data chunks corre-
sponds to a plurality of the deduplicated files;

in response to determining that the storage volume should

be synchronized or replicated to the replica storage vol-
ume, determining, by the first device, whether the stor-
age volume is configured or volume level synchroniza-
tion, file level synchronization, or replication;

in response to determining that the storage volume is con-

figured for volume level synchronization,

identifying, by the first device, a first folder, wherein the
first folder comprises the volume data and a second
folder, wherein the second folder comprises the data
chunks;

reading, by the first device, the data chunks from the
second folder;

reading, by the first device, the deduplication settings;

reading, by the first device, the deduplicated files with-
out rehydrating the deduplicated files;

determining, by the first device, that the volume data is
excluded from synchronization;

in response to determining that the volume data is
excluded from synchronization, skipping, by the first
device, the volume data; and

sending, by the first device, the deduplicated files, the
deduplication setting data, and the data chunks to a
second device that comprises the replica storage vol-
ume.

2. The method of claim 1 further comprising:

in response to determining that the storage volume is con-

figured for file level synchronization,

reading, by the first device, the deduplicated files in a
manner to rehydrate the deduplicated files; and

sending, by the first device, the rehydrated files to the
replica.

3. The method of claim 1 wherein the deduplication setting
data comprises a schedule for deduplication.

4. A method of claim 2, wherein determining that storage
volume is configured for volume level synchronization com-
prises determining that an operating system of the first device
and an operating system of the second device is Windows
Server 2012, wherein determining that the storage volume is

US 9,239,869 B1

15

configured for file level synchronization comprises determin-
ing that the operating system of the first device is not Win-
dows Server 2012.
5. The method of claim 1 further comprising:
receiving, by the second device, the deduplicated files, the
deduplication setting data, and the data chunks;
writing, by the second device, the deduplicated files and the
data chunks to the replica storage volume; and
configuring, by the second device, deduplication of the
replica storage volume in accordance with the dedupli-
cation setting data.

6. The method of claim 1, wherein the deduplicated files
comprise a sparse point and a reparse point, wherein the
sparse point and the reparse point each comprise a reference
to a data chunk of the data chunks, wherein reading the
deduplicated files without rehydrating the deduplicated files
comprises:

sending, to a bypass mechanism, a request to read the

deduplicated files; and

reading, by the bypass mechanism, the deduplicated files

without resolving the references that comprise the
sparse point and the reparse point.

7. A system comprising a first device, wherein the first
device comprises:

a first processor; and

a first computer readable storage medium comprising

instructions executable by the first processor to cause the
first device to,
determine that a storage volume should be synchronized
with a replica storage volume, wherein the storage
volume comprises volume data, data chunks, dedupli-
cated files, and deduplication setting data, wherein
each of the data chunks corresponds to a plurality of
the deduplicated files;
in response to a determination that the storage volume
should be synchronized with the replica storage vol-
ume, determine that the storage volume is configured
for volume level synchronization; and
in response to a determination that the storage volume is
configured for volume level synchronization,
identify a first folder, wherein the first folder com-
prises the volume data and a second folder, wherein
the second folder comprises the data chunks;
read the data chunks from the second folder;
read the deduplication setting data;
read the deduplicated files without rehydrating the
deduplicated files;
determine that the volume data is excluded from syn-
chronization;
in response to a determination that the volume data is
excluded from synchronization, skip the volume
data; and
send the deduplicated files, the deduplication setting
data, and the data chunks to a second device that
comprises the replica storage volume.

8. The system of claim 7 wherein the first computer read-
able storage medium further comprises instructions execut-
able by the first processor to cause the first device to:

determine that the storage volume is configured for file

level synchronization; and

in response to a determination that the storage volume is

configured for file level synchronization,

read the deduplicated files in a manner to rehydrate the
deduplicated files; and

send the rehydrated files to the replica.

5

25

40

45

55

60

65

16

9. The system of claim 7, wherein the first computer read-
able storage medium further comprises instructions execut-
able by the first processor to cause the first device to:

determine that the storage volume is configured for repli-

cation; and,

in response to a determination that the storage volume is

configured for replication,

identify first changes to the deduplicated files using a
filtering file driver;

write the first changes to a journal file and the dedupli-
cated files;

identify second changes to the volume data;

determine that the volume data is excluded from repli-
cation;

in response to a determination that the volume data is
excluded from replication, write the second changes
to the volume data without writing the second
changes to the journal file; and

send the journal file to the second device.

10. The system of claim 7 further comprising the second
device, wherein the second device comprises:

a second processor; and

a second computer readable storage medium comprising

instructions executable by the processor to cause the

second device to:

receive, from the first device, the deduplicated files, the
deduplication setting data, and the data chunks;

write the deduplicated files and the data chunks to the
replica storage volume; and

configure deduplication of the replica storage volume in
accordance with the deduplication setting data.

11. The system of claim 7, wherein the deduplicated files
comprise a sparse point and a reparse point, wherein the
sparse point and the reparse point each comprise a reference
to a data chunk of the data chunks, wherein the instructions
executable by the processor to cause the first device to read
the deduplicated files without rehydrating the deduplicated
files comprise instructions executable by the processor to
cause the first device to:

send, to a bypass access mechanism, a request to read the

deduplicated files; and

read, by the bypass access mechanism, the duplicated files

without resolving the references that comprise the
sparse point and the reparse point.

12. The system of claim 7, wherein the instructions execut-
able by the first processor to cause the first device to deter-
mine that the storage volume is configured for volume level
synchronization comprises instructions executable by the
first processor to cause the first device to determine that an
operating system of the first device and an operating system
of the second device is Windows Server 2012.

13. A computer product comprising a computer readable
storage medium having program code embodied therewith,
the program code to:

determine that the storage volume should be synchronized

with a replica storage volume, wherein the storage vol-
ume comprises volume data, data chunks, deduplicated
files, and deduplication setting data, wherein each of the
data chunks corresponds to a plurality of the dedupli-
cated files;

in response to a determination that the storage volume

should be synchronized with the replica storage volume,

determine that the storage volume is configured for vol-

ume level synchronization,

identify a first folder, wherein the first folder comprises
the volume data and a second folder, wherein the
second folder comprises the data chunks;

US 9,239,869 B1

17

read the data chunks from the second folder;

read the deduplication setting data;

read the deduplicated files without rehydrating the dedu-
plicated files;

determine that the volume data is excluded from syn-
chronization;

in response to a determination that the volume data is
excluded from synchronization, skip the volume; and

send the deduplicated files, the deduplication setting
data, and the data chunks to a second device that
comprises the replica storage volume.

14. The computer program product of claim 13, wherein
the deduplicated files comprise a sparse point and a reparse
point, wherein the sparse point and the reparse point each
comprise a reference to a data chunk of the data chunks,
wherein the program code further comprises program code
to:

send, to a bypass access mechanism, a request to read the

deduplicated files; and

read, by the bypass access mechanism, the deduplicated

files without resolving the references that comprise the
sparse point and reparse point.

15. The computer program product of claim 13, wherein
the program code to determine that the storage volume is
configured for volume level synchronization comprises pro-
gram code to determine that an operating system of the first
device and an operating system of the second device Win-
dows Server 2012.

16. The computer program product of claim 13, wherein
the program code further comprises program code to:

determine that the storage volume is configured for file

level synchronization; and

in response to a determination that the storage volume is

configured for file level synchronization,
read the deduplicated files in a manner to rehydrate the
deduplicated files; and

5

15

20

25

30

35

18

send the rehydrated files to the replica.

17. The computer program product of claim 13, wherein
the deduplication setting data comprises a schedule for dedu-
plication.

18. The computer program product of claim 13, wherein
the program code further comprises program code to:

determine that the storage volume is configured for repli-

cation; and

in response to a determination that the storage volume is

configured for replication,

identify first changes to the deduplicated files using a
filtering file driver;

write the first changes to a journal file and the dedupli-
cated files;

identify second changes to the volume data;

determine that the volume data is excluded from repli-
cation;

in response to a determination that the volume data is
excluded from replication, write the second changes
to the volume data without writing the second
changes to the journal file; and

send the journal file to the second device.

19. The computer program product of claim 13, wherein
the program code further comprises program code to:

receive, from the first device, the deduplicated files, the

deduplication setting data, and the data chunks;

write the deduplicated files and the data chunks to the

replica storage volume; and

configure deduplication of the replica storage volume in

accordance with the deduplication setting data.

20. The computer program product of claim 16, wherein
the program code to determine that the storage volume is
configured for file level synchronization comprises program
code to determine that the operating system of the first device
is not Windows Server 2012.

#* #* #* #* #*

